Development of dual-probe atomic force microscopy system using optical beam deflection sensors with obliquely incident laser beams.

نویسندگان

  • Eika Tsunemi
  • Kei Kobayashi
  • Kazumi Matsushige
  • Hirofumi Yamada
چکیده

We developed a dual-probe (DP) atomic force microscopy (AFM) system that has two independently controlled probes. The deflection of each cantilever is measured by the optical beam deflection (OBD) method. In order to keep a large space over the two probes for an objective lens with a large numerical aperture, we employed the OBD sensors with obliquely incident laser beams. In this paper, we describe the details of our developed DP-AFM system, including analysis of the sensitivity of the OBD sensor for detection of the cantilever deflection. We also describe a method to eliminate the crosstalk caused by the vertical translation of the cantilever. In addition, we demonstrate simultaneous topographic imaging of a test sample by the two probes and surface potential measurement on an α-sexithiophene (α-6T) thin film by one probe while electrical charges were injected by the other probe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid and Reliable Calibration of Laser Beam Deflection System for Microcantilever-Based Sensor Setups

Cantilever array-based sensor devices widely utilise the laser-based optical deflection method for measuring static cantilever deflections mostly with home-built devices with individual geometries. In contrast to scanning probe microscopes, cantilever array devices have no additional positioning device like a piezo stage. As the cantilevers are used in more and more sensitive measurements, it i...

متن کامل

Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions

We have developed a liquid-environment frequency modulation atomic force microscope FM-AFM with a low noise deflection sensor for a wide range of cantilevers with different dimensions. A simple yet accurate equation describing the theoretical limit of the optical beam deflection method in air and liquid is presented. Based on the equation, we have designed a low noise deflection sensor. Replace...

متن کامل

Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering.

A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO(2) starting material), reactive low voltage ion plating, and dual ion beam sputtering. The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one...

متن کامل

Custom Built Atomic Force Microscope for Nitrogen-Vacancy Diamond Magnetometry

The nitrogen-vacancy (N-V) center in diamonds have the potential to be an ultra-sensitive magnetic field sensor that is capable of detecting single spins. Implementing this sensor for general and nontransparent samples is not trivial. For N-V centers to be a useful probe, a way of positioning the NV center with nanometer accuracy while simultaneously measuring its fluorescence is needed. Here, ...

متن کامل

A high frequency sensor for optical beam deflection atomic force microscopy.

We demonstrate a novel electronic readout for quadrant photodiode based optical beam deflection setups. In our readout, the signals used to calculate the deflections remain as currents, instead of undergoing an immediate conversion to voltages. Bipolar current mirrors are used to perform all mathematical operations at the transistor level, including the signal normalizing division. This method ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 82 3  شماره 

صفحات  -

تاریخ انتشار 2011